If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5y^2+25y=0
a = -5; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·(-5)·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*-5}=\frac{-50}{-10} =+5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*-5}=\frac{0}{-10} =0 $
| 4a=72*3.14 | | 3(2x)+5x=34 | | x+15=4x+42 | | -2(y-1)+y=4(y-2) | | -12x+6x^2=0 | | p-(p+35)=7(p-5)+2p | | 3x+32=7x+68 | | 300+.014x=200+.025x.011 | | -(x+6)+2=-(11x+4)+6x | | -28=4w+8(w-2) | | -x-5=2x+19 | | (7x+2)(20-3x)/4=0 | | -5y+3(y+4)=6 | | 15(1/5x+5)=61/15+2/3x)15 | | 6/8x=90 | | 3(x-4)+2x=8 | | 20x-5x+4=0 | | 3x+89+8x+58=190 | | -x-5=x+13 | | -x-5=+ | | 7(50-1y)+5.5y=119 | | 8-4z=10+6z | | x+14=-x+32 | | (-2)-x=2x+(-11) | | 18(x+2)=90 | | 12x^2-6x-16=0 | | -3(11-k)=-3(k-1) | | x(2x-1)+5x-1,5=-2,5(x+1)-2x(3-x) | | 232=43-u | | 190=-y+32 | | P(x)=-6+0.5x | | 269-x=196 |